Laboratory 3

(Due date: **005**: March 9th, **006**: March 10th)

OBJECTIVES

- ✓ Implement a Digital System: Control Unit and Datapath Unit
- ✓ Describe Algorithmic State Machine (ASM) charts in VHDL.
- ✓ Learn interfacing with SPI devices.

VHDL CODING

✓ Refer to the <u>Tutorial: VHDL for FPGAs</u> for parametric code for: Registers, busmux.

FIRST ACTIVITY: DESIGN OF AN ACCELEROMETER DATA RETRIEVER (100/100)

- ACCELEROMETER ADXL362: This 3-axis MEMS device communicates via a 4-wire SPI and operates as a SPI slave device. We read/write 8-bit data via a register-based interface. ADXL362 parameters (range, resolution, ODR are selectable):
 - ✓ Range: \pm 2g (default at reset), \pm 4g, \pm 8g.
 - ✓ Resolution: 1mg/LSB (default at reset), 2 mg/LSB, 4 mg/LSB
 - ✓ Output data rate (ODR): 12.5 400 Hz. Default at reset: 100 Hz.
 - $\checkmark~$ Output resolution: 12 bits. Representation: signed.
- wr_reg_adxl362: This circuit handles basic SPI communication with the ADXL362. The user provides address, data, and read/write. Then, a read/write transaction is executed via the SPI bus (data structure specified in the ADXL362 datasheet). Use the VHDL code wr_reg_axl362.vhd (use all the design .vhd files in <u>accelerom.zip</u> except accelerom.vhd) with SCLK_T = 10⁵ (cycles of 10 ns in a period of a 1000 Hz SCLK).

- FSMemb: FSM embedding counters i and j. It configures 2 ADXL362 registers (0x1F, 0x2D), and then cyclically requests read from 12 8-bit ADXL362 registers containing accelerometer data and places retrieved data on 12 8-bit output registers.
 Data is organized into:
 - ✓ 4 16-bit measurements (X, Y, Z, Temperature). We display this on 16 LEDs (selectable by sel). Note that since the actual measurements are only 12-bit wide, the 4 MSBs (of the 16 bits) are sign-extended.
 - ✓ 3 8-bit measurements (low precision X, Y, Z) and 8-bit Status: Shown (as hex) on 8 7-segment displays: |X|Y|Z|ST|

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-4710/5710: Computer Hardware Design

 This is the list of registers we deal with in this experiment, which is a basic operation mode. Refer to the ADXL362 datasheet for a full list of registers and operation modes.

Rea Address	Name	Reg Address	Name		
0x1F	SOFT RESET	0x0E	XDATA L		
0x2D	POWER CTL	0x0F	XDATA H		
	_	0x10	YDATA L		
		0x11	YDATA H		
0x08	XDATA	0x12	ZDATA_L		
0x09	YDATA	0x13	ZDATA_H		
0x0A	ZDATA	0x14	TEMP_L		
0x0B	STATUS	0x15	TEMP_H		

resetn=0 **S1** address $\leftarrow 0x1F$ data ← 0x52 wr rd $\leftarrow 1$, start $\leftarrow 1$ **S2** done **S**3 $\text{address} \leftarrow 0 \text{x2D}$ data $\leftarrow 0x02$ wr_rd $\leftarrow 1$, start $\leftarrow 1$ **S4** done **S**5 address \leftarrow i+14 data $\leftarrow 0xXX$ wr_rd \leftarrow 0, start \leftarrow 1 **S6** done E_i ← i=7 i ← i+1 ves i ← 0 **S7** address \leftarrow j+8 data $\leftarrow 0xXX$ wr_rd \leftarrow 0, start \leftarrow 1 **S8** done 1 E_j ← 1

j ← 0

i=3

j ← j+1

8-display Serializer: Eight 7-segment displays.

PROCEDURE

• Vivado: Complete the following steps:

- ✓ Create a new Vivado Project. Select the corresponding Artix-7 FPGA device (e.g.: the XC7A50T-1CSG324 FPGA device for the Nexys A7-50T board).
- ✓ Write the VHDL code for the given circuit. Run <u>Synthesis</u> to clear your circuit of syntax errors as well as to evaluate the warnings.
 - Use the Structural description: Create (or re-use) a separate .vhd file for the components (note that the Serializer has its own components) and interconnect them all in a top file:
 - Register with enable: my_rege. You need 12 of these units. Use the proper parameters and I/O connections (the input sclr is not used in these registers; however, you still need to assign it a value of `0').
 - Basic AXL362 controller: wr_reg_axl362. Use parameter SCLK_T = 10^5 .
 - 8-display Serializer: It includes its own components (hex-to-7seg decoder, 3-to-8 decoder, counter, BusMUX 8-to-1). You can use the <u>VHDL code</u> for the 4-display serializer and modify it for 8 displays.
 - Other components: BusMUX 4-to-1, 3-to-8 decoder with enable, 2-to-4 decoder with enable.
- ✓ Write the VHDL testbench (generate a 100 MHz input clock for your simulations).
 - With SCLK_T = 10⁵, we get a SCLK of 1000 Hz. For SPI, this means that a bit is read/written every 1 ms. This is the expected behavior; however, simulating this behavior will take a very long time in our Vivado simulator window. In addition, we need to emulate data coming from the accelerometer (MISO).
 - Thus, for simplicity's sake, we will do the following:
 - Set the parameter $SCLK_T=16$ for the wr_reg_axl362 block. For SPI, this means that a bit is read/written every 16 clock cycles.
 - · In the testbench, set MISO = 1. This means that our accelerometer controller will only read 1's.
 - Input sel. Set it to "00". This way, only the data X_H X_L will be available in ODATA_LEDS.

- ✓ Perform <u>Behavioral Simulation</u> of your design. **Demonstrate this to your TA**.
 - To help debug your circuit, add the internal signals to the waveform (e.g.: state, i, j, address, data, odata, done, etc.)
 - Run the simulation for as long as needed to observe the main FSMemb issue the 2 writing commands and 12 reading commands. This is, when the FSMemb goes from S1 to S8, and then returns to S5 for the first time.
 - Here, verify that the signals address, data, w_rd, i, and j behave as expected (see FSMemb ASM diagram).
 - You can observe how the SPI signals (MOSI, MISO, /CS, SCLK) behave for:
 - · 2 writing commands.
 - 8 reading commands + 4 reading commands. These reading commands repeat cyclically (S5 to S8).
 - Right after the FSMemb returns to S5 for the first time, verify that data on ODATA_LEDS and on the input to DAT_7SEG is correct (you should see just 1's). You could modify sel in the testbench to select what to display on ODATA LEDS, but you will just see 1's.
 - DAT_7SEG outputs: It would take a very long time to see changes in the Vivado simulator window (as the transitions in the 8-display serializer occur every 1 ms). Thus, this is better tested in the circuit.

✓ I/O Assignment: Create the XDC file associated with your board.

Suggestion (Nexys A7-50T/A7-100T, Nexys 4/DDR):											
Board pin names	CLK100MHZ	CPU_RESET	SW1-SW0]	LED15-LED0	CA-CG		AN7-AN0			
Signal names in code	clock	resetn	$sel_1 - sel_0$	ODAT	A_LEDS[150]	DAT7_SEG[60)]	AN7-AN0			
		1	1		1	1					
Board pin names	ACL_MISO	ACL_MOS	SI ACL_S	CLK	ACL_CSN						
Signal names in code	MISO	MOSI	SCL	K	/CS						

✓ Generate and download the bitstream on the FPGA. Test the circuit. **Demonstrate this to your TA**.

- Note: Do not forget to set the parameter SCLK_T=10⁵ when testing (this is: synthesize, implement, and generate bitstream with this parameter).
- Low precision data (8-bit XDATA, YDATA, ZDATA) and STATUS should appear on the 7-seg displays.
 - Verify that STATUS is 0x41.
- High precision data (16-bit X, Y, Z, T): Only one of them appears on the 16 LEDs based on the 2-bit input sel.
 - ODATA_LEDS[15..0]: Verify the 4 MSBs are effectively sign-extended bits. This means that we only need the 12 LSBs: ODATA_LEDS[11..0].
 - Verify that the low precision data (8-bit XDATA, YDATA, ZDATA) on the 7-seg displays match the high precision data (16-bit X, Y, Z) for ODATA_LEDS[11..4]; use sel to select among different high precision measurements.
- To ensure that you are reading correct data from the accelerometer, check the following:
 - At rest, z should be about 0xC28 (7-seg display: 0xC2). This corresponds to -984mg. When the board is face down, the sign of z should be positive.
- Feel free to tilt the axes of the FPGA Board to detect changes.
- Submit (<u>as a .zip file</u>) all the generated files: VHDL code files, VHDL testbench and XDC file to Moodle (an assignment will be created). DO NOT submit the whole Vivado Project.

TA signature: _____

Date: _____